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Expressions for absorption and the secondary scattering intensity ratio are

presented for a small beam impinging off-center of a spherical amorphous

sample. Large gradients in the absorption correction are observed from small

offsets from the central axis. Additionally, the secondary scattering intensity

ratio causes an intensity asymmetry in the detector image. The secondary

scattering intensity ratio is presented in integral form and must be computed

numerically. An analytic, small-angle, asymptotic series solution for the integral

form of the absorption correction is also presented.

1. Introduction

Levitation techniques, including electrostatic levitation, elec-

tromagnetic levitation and conical nozzle levitation, have been

developed for the study of liquids in an inert, contactless

environment. The absence of a container removes a major

source of heterogeneous nucleation and allows studies of

liquids in the supercooled state (i.e. below the equilibrium

melting temperature). Recently, these levitation techniques

have been used for laboratory X-ray, synchrotron and neutron

scattering studies of these supercooled liquids (Masaki et al.,

2007; Egry & Holland-Moritz, 2011; Gangopadhyay et al.,

2005; Mauro & Kelton, 2011; Krishnan et al., 1997; Higuchi et

al., 2007; Aoki et al., 2003). Owing to surface-tension effects,

the liquids are nearly spherical in shape. A transmission

geometry is typically used for the scattering studies. In many

cases, the beam size is smaller than the sample size, so that

previously reported spherical corrections cannot be applied

for the analysis of the data. Beam alignment becomes critical

in these cases; off-axis transmission through the spherical

samples can result in asymmetric scattering. Although preci-

sion alignment stages for levitation chambers have been

reported (Mauro & Kelton, 2011), variations in sample size

and density can cause positional variation between measure-

ments. Some method for correcting for the resulting asym-

metric scattering is needed to compare measurements.

Secondary scattering and absorption corrections for stan-

dard geometries [i.e. plane sample reflection (Warren &

Mozzi, 1966; Dwiggins & Park, 1971), transmission (Dwiggins

& Park, 1971) and moving sample transmission (Dwiggins,

1972) as well as cylindrical sample transmission (Paalman &

Pings, 1962; Blech & Averbach, 1965)] are well known.

Although absorption corrections for small- (Zeidler, 2012)

and large- (Dwiggins, 1975) diameter X-ray beams incident on

spherical samples have been reported, neither secondary

scattering corrections nor absorption corrections for off-axis

transmission through spherical samples have ever been

previously reported. These corrections are presented in this

paper, giving the integral forms of absorption and secondary

scattering intensity through a given solid angle by an amor-

phous spherical sample from an off-axis, infinitesimal, partially

polarized X-ray beam. An analytic approximation is also

reported for the absorption correction in the small-angle limit

for rapid computation.

2. Theory

The theory of X-ray absorption and secondary scattering

correction for arbitrary sample shapes, for the transmission

geometry shown in Fig. 1, is derived in this section. For

notation used in this paper, see Table 1.

As shown in Fig. 1(a), the infinitesimal scattered intensity

dIðr; 2�; �Þ at some distance r from an infinitesimal scattering

volume dV is given by

dIðr; 2�; �Þ ¼ I0

�en

r2
P �0; 2�; �ð Þ J 2�ð Þ dV; ð1Þ

where n is the average number density of the scattering

element, I0 is the intensity of the principal beam incident on

the volume and Pð�0; 2�; �Þ accounts for polarization effects.

The first-order scattering intensity Jð2�Þ is a combination of

the coherent and incoherent scattering intensity in electron

units. Since the coherent and incoherent electron cross

sections are approximately equal, �e is the differential

Thomson cross section for electrons, e4=m2c4. Since only

amorphous samples are considered, Jð2�Þ is assumed to be

symmetric about the azimuthal angle �. In this case, scattering

asymmetry arises from polarization effects, Pð�; 2�; �Þ, which

are described by
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Pð�; 2�; �Þ ¼ 1=2þ �½sin ð�Þ2 � cos ð�Þ2�=2

þ f1þ �½cosð�Þ2 � sinð�Þ2�g cosð2�Þ2=2; ð2Þ

where � quantifies the polarization by the ratio of difference in

intensity between the x and y components of the incident

beam and the total intensity ðIx � IyÞ=ðIx þ IyÞ (Kahn et al.,

1982; Coppens et al., 1992).

Far from the scattering event (Fig. 1c), the intensity

measured at a solid angle, defined by 2� and �, is the integral

of equation (1) over the scattering elements in the sample. The

total number of scattering elements is the integral of equation

(1) over the volume V for a homogeneous sample. For a non-

absorbing material this intensity would be described by

Iðr; 2�; �Þ ¼
I0n

r2
�eP �0; 2�; �ð Þ J 2�ð ÞV: ð3Þ

In reality, both the intensities of the incident beam and the

scattered beam are attenuated as they travel through the

material according to Beer’s law, IðrÞ ¼ Ið0Þ exp ��rð Þ, where

IðrÞ is the intensity a distance r into a material of attenuation

coefficient �. The first scattering intensity, accounting for this

absorption, is given by equation (4), where, as shown in Fig.

1(b), r0 is the path length of the incident beam to the differ-

ential scattering volume and R is the position- and solid-angle-

dependent path length of the scattered beam,

I1ðr; 2�; �Þ ¼ I0n�e=r2
� � R R

V

R
dV

� P �0; 2�; �ð Þ J 2�ð Þ exp ��r0 � �
0R �ð Þ

� �� �
:

ð4Þ

Equation (4) can be rewritten in the form of equation (3) by

defining an effective scattering volume of the system as

V 0 ¼
R R

V

R
exp½��r0 � �

0Rð�Þ� dV. Absorption corrections

convert the measured effective scattering volume to that for

the non-absorbing case by multiplying equation (4) by a factor

of V=V 0.

The scattered beam may, of course, continue to scatter

within the sample. However, since each successive scattering

event is less intense, only secondary scattering needs to be

considered as a correction to recover the primary scattering

intensity. A secondary scattering event is illustrated in Fig. 2,

where an incident X-ray beam of intensity I0 travels along the

path R0.

As previously noted, absorption will cause the beam to be

attenuated along R0, so that the intensity at the point O1,

where the beam is scattered, is given by

I0 O1ð Þ ¼ I0 exp ��r0ð Þ; ð5Þ
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Figure 1
Transmission geometry viewed in different magnifications: (a) at differential volume length scales, (b) at sample length scales and (c) at detector length
scales.

Table 1
Nomenclature.

I0 Intensity of the principal beam incident on the sample
Ii Intensity of a beam after the ith scattering event
�e Differential electron scattering cross section
P �; 2�; �ð Þ Angle-dependent attenuation due to polarization
� Polarization, defined as Ix � Iy

� �
= Ix þ Iy

� �
J 2�ð Þ First-order scattering intensity in electron units
n Number density
V Ideal, unattenuated scattering volume
V 0 Effective scattering volume due to attenuation
dV1 Differential volume of the principal beam path,

dV1 ¼ dA0dr0

dV2 Differential volume of the primary scattered beam path,
dV2 ¼ r1

2 cos 2�1ð Þ d�1 d2�1 dr1

dA0 Principal beam differential area dA0 ¼ r0dr0d�0

�0; r0 Principal beam azimuthal and radial coordinates
rs and rB Sample and beam radii
�; �; z Azimuthal and radial coordinates defining a distance from the

central axis of a spherical sample, and the coordinate along
the central axis

�0; x Azimuthal and radial coordinates defining beam center
incidence on a spherical sample

R Geometry- and angle-dependent path length from the final
diffraction event to the edge of the sample

�;�0 Linear attenuation coefficient of the scattering material
before and after energy shift due to a diffraction event

R Total scattering vector
r; �; 2� Spherical coordinates of total scattering
Ri Vector path of the beam following the ith scattering event
ri; �i; 2�i Diffraction coordinates of the ith scattering event
Oi A point defined by the path

Pi
j Rj�1

	i Atom fraction of element i
Zi Atomic number of element i
Mi Molar mass of element i
�=nð Þi Mass absorption coefficient of element i

f i Atomic form factor of element i
i Mð Þ Incoherent scattering of element i
Subscript ‘s’ For any defined variable 
, subscript ‘s’ denotes a change in

scale to units of sample radius such that 
=rs ¼ 
s

NA Avogadro’s number
N Normalization constant to convert from measured intensity to

electron units



where jR0j ¼ r0. The first scattered beam may either take a

direct path R to the detector (point O3) or reach the detector

after having a secondary scattering event at O2. The contri-

bution of the primary scattering intensity from the differential

volume at point O1 is dI1ðRÞ at point O3. For a small sample

far from the detector, the integral over parallel rays at angles

2� and � is the total primary scattering intensity at point O3.

The intensity of the beam at O2, scattered from O1 and

traveling a distance R1, is given by equation (6), where dV1 is

the differential scattering volume at point O1 and �0 is the

polarization state of the incident beam. If the scattering is

inelastic, the absorption coefficient, �0, will differ from the

original one. Since the change in energy is assumed to be

small, for these calculations �0 can be set equal to �.

dI1 R0;O2ð Þ ¼ I0 O1ð ÞP �0; 2�1; �1ð Þ

� exp ��0r1ð Þ
n

r1
2
�e Jð2�1Þ dV1: ð6Þ

To be detected at point O3, the beam must again scatter at O2

so that it follows path R2. The differential intensity of the

secondary scattered beam measured at O3 is described by

equation (7). The beam leaves the sample at some point along

the path R2, but may also be attenuated by intermediate

material (i.e. the exit window and air path); the changing

attenuation coefficients along the path are represented as a

path integral in the exponential argument,

dI2 R0;R1;O3ð Þ

¼ I0n2�2
e=r1

2r2
2

� �
exp �� r0 þ r1ð Þ �

RO3

O2

�ðxÞ dx

" #

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ dV1 dV2:

ð7Þ

The first differential volume, dV1, is the differential area of the

principal beam, dA0, multiplied by the differential path length

dr0, i.e. dV1 ¼ dA0dr0. The second differential volume, dV2, is

described in terms of the diffraction coordinates of R1 by

dV2 ¼ r1
2 cosð2�1Þ d�1 d2�1 dr1. From Fig. 2, the angles 2�2 and

�2 describe the diffraction angles of the secondary scattering

event.

For jR2j � jR1j (far detector limit), R ’ R2, so that the

secondary diffraction angles 2�2 and �2 map onto R by a 2�1

rotation about the y axis and then a �1 rotation about the z

axis. The rotation matrix, equation (8), constrains 2�2 and �2,

as shown in equations (9) and (10),

sinð2�2Þ cosð�2Þ

sinð2�2Þ sinð�2Þ

cosð2�2Þ

2
64

3
75

¼

cosð2�1Þ cosð�1Þ cosð2�1Þ sinð�1Þ � sinð2�1Þ

� sinð�1Þ cosð�1Þ 0

sinð2�1Þ cosð�1Þ sinð2�1Þ sinð�1Þ cosð2�1Þ

2
64

3
75

�

sinð2�Þ cosð�Þ

sinð2�Þ sinð�Þ

cosð2�Þ

2
64

3
75: ð8Þ

cosð2�2Þ ¼ sinð2�1Þ cosð�1Þ sinð2�Þ cosð�Þ

þ sinð2�1Þ sinð�1Þ sinð2�Þ sinð�Þ

þ cosð2�1Þ cosð2�Þ; ð9Þ

tanð�2Þ ¼ cosð�1Þ sinð2�Þ sinð�Þ � sinð�1Þ sinð2�Þ cosð�Þ
� �
� ½cosð2�1Þ cosð�1Þ sinð2�Þ cosð�Þ

þ cosð2�1Þ sinð�1Þ sinð2�Þ sinð�Þ

� sinð2�1Þ cosð2�Þ��1: ð10Þ

The angle �2 only comes into the spherical geometry calcu-

lation through the secondary diffraction polarization term

P �1; 2�2; �2ð Þ. After the first scattering event, the polarization

state of the beam changes, such that �1 is given by

�0 cos2 �1ð Þ � �0 sin2 �1ð Þ þ 1
� �

cos2 2�1ð Þ þ 1
� �

� 2

�0 cos2 �1ð Þ � �0 sin2 �1ð Þ þ 1
� �

cos2 2�1ð Þ � 1
� �

þ 2
: ð11Þ

Equation (7) is integrated over the volume of irradiated

material for both the incident and primary scattered beams to

obtain the total secondary scattering intensity at O3. The

differential intensity is described by equation (7), but it should

be noted that the bounds on the integral are geometry

dependent.

By convention (Warren & Mozzi, 1966; Dwiggins, 1972,

1975), the ratio of secondary to primary scattering is reported

in the form of equation (12), where QM is the geometry-

dependent integral, which can be solved given �t, 2�, � and

J 2�ð Þ=
P
	iZi

2, and summations are performed over elemental

species i,

I2

I1

2�; �ð Þ ¼

P
	iZi

2
� �2

QM

J 2�ð Þ
P
	iMi �=�ð Þi

: ð12Þ

3. Absorption for off-central-axis beam

For a beam of cross-sectional area dA0 that is incident off-

center by a radial distance x and at the angle �0 onto a sample

of radius rs, the scattering volume is a triple integral over the

area of the beam (beam radius and angle) and the sample

thickness, as shown in Fig. 3.
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Figure 2
General diagram of secondary scattering.



The effective scattering volume for a spherical sample in

this case is described by equation (13), where R r0; 2�; �; �; �ð Þ

is the position-dependent travel length of the diffracted beam

and dA0ð�
0; r0Þ is the differential area of the principal beam,

V 0Sphereð2�; �Þ ¼
R R

dA0ð�
0; r0Þ

Rðrs
2��2Þ

1=2

�ðrs
2��2Þ

1=2

dr0

� exp½��r0 � �ðrs
2
� �2
Þ

1=2
� �Rðr0; 2�; �; �; �Þ�:

ð13Þ

The function R r0; 2�; �; �; �ð Þ can be obtained from the

intersection between a cone centered at the origin pointing in

theþz direction and a sphere shifted by a distance r0 along the

z axis and centered in the x–y plane at an angle � from the x

axis and radial distance �, as shown in Fig. 4. The path length

from the position r0; �; � to the surface of a sphere along the

solid angle 2�; � is described by

Rðr0; 2�; �; �; �Þ ¼ � sinð2�Þ cosð�� �Þ � r0 cosð2�Þ

þ ½r2
0 cos2

ð2�Þ � r2
0 � �

2
þ rs

2

� 2r0� cosð2�Þ sinð2�Þ cosð�� �Þ

þ �2 sin2
ð2�Þcos2

ð�� �Þ�1=2: ð14Þ

Given any arbitrary beam shape and incidence, the effective

scattering volume can be obtained by numerically integrating

equations (13) and (14).

For a circular beam that is centered off the central axis,

equation (13) becomes equation (15) with the x axis aligned

such that �0 ¼ 0,

V 0Sphereð2�; �Þ ¼
RrB

0

r0 dr0
R2�
0

d�0
Rðrs

2��2Þ
1=2

�ðrs
2��2Þ

1=2

dr0

� exp½��r0 � �ðr
2
s � �

2
Þ

1=2
� �Rðr0; 2�; �; �; �Þ�;

ð15Þ

where � = f½r0 cosð�0Þ þ x�
2
þ r02 sin ð�0Þ2g1=2, � =

tan�1fr0 sinð�0Þ=½r0 cosð�0Þ þ x�g � �, and r0 and �0 are beam

coordinates.

It is useful to scale by units of the sample radius; here any

scaled quantity is denoted by the subscript ‘s’ (e.g. 
=rs ¼ 
s).

This reduces the number of parameters from four �; rB; rs; xð Þ

to three �rs; rBs; xsð Þ as shown in equations (16) and (17),

V 0Sphere ¼ rsr
2
B

R1
0

r0s dr0s
R2�
0

d�0
Rð1��s

2Þ
1=2

�ð1��s
2Þ

1=2

dr0s

� exp½��rsr0s � �rsð1� �s
2Þ

1=2
� �rsRsðr0s; 2�; �; �s; �Þ�;

ð16Þ

Rs r0s; 2�; �; �s; �ð Þ ¼ �s sinð2�Þ cosð�� �Þ � r0s cosð2�Þ

þ ½r0s
2 cos2

ð2�Þ � r0s
2
� �s

2
þ 1

� 2r0s�s cosð2�Þ sinð2�Þ cosð�� �Þ

þ �s
2sin2
ð2�Þcos2ð�� �Þ�1=2;

ð17Þ

where �s ¼ f½r
0
srBs cosð�0Þ þ xs�

2
þ r02s ðrBsÞ

2 sinð�0Þ2g1=2 and � ¼
tan�1fr0srBs sinð�0Þ=½r0srBs cosð�0Þ þ xs�g � �.

The integral in equation (16) has no closed-form solution.

In the small-beam limit, rBs ! 0, two of the integrals become

trivial as shown by equation (18). The spherical correction can

then be easily computed numerically,

V 0Sphere ¼ �rsrB
2 exp ��rsð1� x2

s Þ
1=2

� � Rð1�x2
s Þ

1=2

�ð1�x2
s Þ

1=2

dr0s

� exp ��rsr0s � �rsRsðr0s; 2�; �; xs; �Þ
� �

: ð18Þ

If a numerical solution is too computationally expensive, such

as when using fitting algorithms, an analytic expansion in the

small-angle limit 2�! 0 may be used.

The asymptotic expansion of the absorption correction for a

zero-width beam is given by equation (19), where the first six

coefficients are specified in Table 2,
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Figure 4
Perpendicular views of the geometry of a diffraction cone intersecting a
spherical sample.

Figure 3
Geometry of scattering from a spherical sample.



V

V 0
� exp 2�rsð1� x2

s Þ
1=2

� �
=ð1� x2

s Þ
1=2

�
X1
i¼0

Ai �rs; xs; �ð Þ 2�ð Þi;

2�! 0; rBs ¼ 0: ð19Þ

This correction must be applied to two-dimensional data since

it can manifest itself as a large gradient in intensity across the

detector. Although the higher-order terms in the rBs ! 0

expansion are valid corrections for xs þ rBs < 1, as parts of the

beam miss the sample (i.e. for xs þ rBs > 1), these terms

diverge from the numerical solution while the lowest-order

term remains accurate.

4. Secondary scattering for off-central-axis beam

In this section, a numerical solution for the secondary scat-

tering geometry, as illustrated in Fig. 5, is presented.

The bounds of integration for the secondary scattering

integrals are defined by the two illuminated volumes, i.e. of the

principal beam and primary diffraction cones (refer to Fig. 3).

For the principal beam this volume is given by

RrB

0

r0 dr0
R2�
0

d�0
Rðr2

s��
2Þ

1=2

�ðr2
s��

2Þ
1=2

dr0: ð20Þ

The volume of the primary diffraction cone originating from

the point r0; �; �ð Þ is obtained by an integral over 2�1, �1 and

the path length from the diffracting volume to the edge of the

sphere,

R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRðr0;2�1;�1;�;�Þ

0

r1
2 dr1: ð21Þ

The two-volume integral, for secondary scattering in an arbi-

trary spherical geometry, is described by

I2 2�; �ð Þ ¼ I0n2�2
e=r2

� � RrB

0

r0 dr0
R2�
0

d�0
Rðr2

s��
2Þ

1=2

�ðr2
s��

2Þ
1=2

dr0

�
R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRðr0;2�1;�1;�;�Þ

0

dr1

� exp½��r0 � �r1 � �ðr
2
s � �

2Þ
1=2
� �R z1; 2�; �; �1; �1ð Þ�

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ:

ð22Þ

The path length from the secondary scattering volume to the

surface of the sphere is R z1; 2�; �; �1; �1ð Þ, where z1; �1; �1ð Þ is

the point of secondary scattering in cylindrical coordinates.

The values of z1, �1 and �1 are defined by z1 ¼ r0 þ r1 cos 2�1ð Þ,

�1 ¼ tan�1 r0 sinð�0Þ þ r1 sinð2�1Þ sinð�1Þ

½r0 cosð�0Þ þ x� þ r1 sinð2�1Þ cosð�1Þ

� 	
� �

and
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Table 2
Coefficients for small-angle expansion of the off-axis spherical absorp-
tion.

i Ai

0 1
1 cosð�Þ�rsxs

2 �rs

6ðxs
2 � 1Þ

½2�rs cosð�Þ2xs
4
� xs

2
ð1� xs

2
Þ

1=2

� 2�rs cosð�Þ2xs
2
þ ð1� xs

2
Þ

1=2

� 2xs
2 cosð�Þ2ð1� xs

2
Þ

1=2
�

3 xs cosð�Þ�rs

6ðxs
2 � 1Þ

½2�rs cosð�Þ2xs
2
ð1� xs

2
Þ

1=2
þ xs

2
� 1�

4 �rs

360ðxs
2 � 1Þ

½8ð�rsÞ
3xs

6 cosð�Þ4 þ 40�rsxs
4 cosð�Þ4

� 14�rsxs
4
þ 32ð�rsÞ

2xs
4 cosð�Þ4ð1� xs

2
Þ

1=2

� 8ð�rsÞ
3xs

4 cosð�Þ4

� 32ð�rsÞ
2xs

4 cosð�Þ2ð1� xs
2
Þ

1=2

þ 44�rsxs
4 cosð�Þ2 � 11ð1� xs

2
Þ

1=2xs
2

� 4x2 cosð�Þ2ð1� xs
2
Þ

1=2
� 44�rsxs

2 cosð�Þ2

þ 32ð�rsÞ
2xs

2 cosð�Þ2ð1� xs
2
Þ

1=2

þ 11ð1� xs
2
Þ

1=2
� 14�rs þ 28�rsxs

2
�

5 �rsxs cosð�Þ

360ðxs
2 � 1Þ

½8ð�rsÞ
3xs

4 cosð�Þ4ð1� xs
2
Þ

1=2

þ 16ð�rsÞ
2xs

4
� 40ð�rsÞ

2xs
4 cosð�Þ4

þ 8ð�rsÞ
3xs

4 cosð�Þ2ð1� xs
2
Þ

1=2

þ 24ð�rsÞ
2xs

4 cosð�Þ2 þ 3xs
2

� 6�rsxs
2
ð1� xs

2
Þ

1=2
� 3þ 16ð�rsÞ

2

� 8ð�rsÞ
3xs

2 cosð�Þ2ð1� xs
2
Þ

1=2

þ 6�rsð1� xs
2
Þ

1=2
� 32ð�rsÞ

2xs
2

þ 36�rsxs
2 cosð�Þ2ð1� xs

2
Þ

1=2

� 24ð�rsÞ
2xs

2 cosð�Þ2�

Figure 5
The geometry of a secondary diffraction cone intersecting a spherical
sample.



�1 ¼ f½r
0 cosð�0Þ þ xþ r1 sinð2�1Þ cosð�1Þ�

2

þ ½r02 sinð�0Þ þ r1 sinð2�1Þ sinð�1Þ�
2
g

1=2:

As with the spherical absorption correction, the number of

parameters can be reduced by scaling to rs, yielding

I2 2�; �ð Þ ¼ I0r4
s n2�2

e=r2
� � RrBs

0

r0s dr0s
R2�
0

d�0
Rð1��s

2Þ
1=2

�ð1��s
2Þ

1=2

dr0s

�
R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRs r0s;2�1;�1;�s;�ð Þ

0

dr1s

� exp½��rsr0s � �rsr1s � �rsð1� �s
2
Þ

1=2

� �rsRs z1s; 2�; �; �1s; �1ð Þ�

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ:

ð23Þ

The evaluation of equation (23) is made more difficult by the

finite size of the beam. In the small-beam limit, however, two

of the six integrals become trivial and �! x such that

equation (22) reduces to

I2 2�; �ð Þ ¼ ðI0�r2
Br2

s n2�2
e=r2Þ

Rð1�x2
s Þ

1=2

�ð1�x2
s Þ

1=2

dr0s

�
R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRsðr0s;2�1;�1;xs;�Þ

0

dr1s

� exp½��rsr0s � �rsr1s � �rsð1� x2
s Þ

1=2

� �rsRs z1s; 2�; �; �1s; �1ð Þ�

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ:

ð24Þ

Since the corrected intensity is described by equation (4), the

ratio of secondary scattering intensity to primary scattering

intensity is given by

I2 2�; �ð Þ=I1 2�; �ð Þ ¼

rsn�eV= 2P �0; 2�; �ð Þ J 2�ð ÞV 0
� �� � Rð1�x2

s Þ
1=2

�ð1�x2
s Þ

1=2

dr0s

�
R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRs r0s;2�1;�1;x;�ð Þ

0

dr1s

� exp½��rsr0s � �rsr1s � �rsð1� x2
s Þ

1=2

� �rsRs z1s; 2�; �; �1s; �1ð Þ�

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ:

ð25Þ

To convert this to the form of equation (12), the substitution

rsn�e ¼ �eNA�rs=
P
	iMið�=�Þi is made so that QM for offset

spherical geometry is given by

QM ¼ NA�e�rsV= 2P �0; 2�; �ð ÞV 0
� �� � Rð1�x2

s Þ
1=2

�ð1�x2
s Þ

1=2

dr0s

�
R�
0

sinð2�1Þ d2�1

R2�
0

d�1

RRs r0s;2�1;�1;x;�ð Þ

0

dr1s

� exp½��rsr0s � �rsr1s � �rsð1� x2
s Þ

1=2

� �rsRs z1s; 2�; �; �1s; �1ð Þ�

� P �0; 2�1; �1ð Þ J 2�1ð ÞP �1; 2�2; �2ð Þ J 2�2ð Þ=
P
	iZi

2
� �2

:

ð26Þ

The large number of parameters makes the tabulation of QM

difficult. Instead, it can be obtained from a numerical inte-

gration, given values of �0, xs, �rs, 2�, � and J 2�ð Þ=
P
	iZi

2
� �

.

Since J 2�ð Þ is unknown, the computation of QM, which

is independent of the experimental data, may be obtained

if J 2�ð Þ is approximated by
P
	i½ fi

2
þ iðMÞi� (Warren &

Mozzi, 1966; Dwiggins & Park, 1971; Dwiggins, 1972).

Unlike for standard transmission and reflection

geometries, the analytic approximation for J 2�ð Þ=
P
	iZi

2
� �

¼ qþ fð1� qÞ=½1þ b sin2
ð�Þ�g (Warren & Mozzi, 1966;

Dwiggins & Park, 1971; Dwiggins, 1972) provides little benefit

here. The approximation for J 2�ð Þ as the average atomic

scattering intensity diverges strongly from the true values of

J 2�ð Þ at small angles and, therefore, may not be appropriate

for small-angle data with large �rs. Following Malet et al.

(1973), the experimental I 2�ð Þ, after removing polarization

and absorption effects and scaling to electron units, is used as

an approximate form of J 2�ð Þ in the secondary scattering

integral. Practically, the experimental I 2�ð Þ is limited to some

2�max after which the
P
	i½fi

2
þ iðMÞi� approximation is

appropriate. The suggested approximation for J 2�ð Þ is shown

in equation (27) where the normalization constant N is chosen

to match the two approximate forms of J 2�ð Þ at 2�max,

J 2�ð Þ ’

1

N

1

2�

Z2�
0

d�
I �; 2�ð ÞV

P �0; 2�; �ð ÞV 0
for 2� � 2�max;

P
	i fi

2
þ i Mð Þi

� �
for 2� 	 2�max:

8>><
>>: ð27Þ

In principle, the calculation of I2=I1 can be iterated with

successively better approximations for J 2�ð Þ; however, this is

too computationally intensive to be practical.

5. Results and discussion

Three special cases of the integral forms of absorption and

secondary scattering derived in the previous section for an

X-ray beam incident on a spherical amorphous sample are of

particular interest. The first is the case of a non-polarized

beam incident on the center of the sample xs ¼ 0; �0 ¼ 0ð Þ. For

the second case, where the incident beam is off to one side of

the central axis, the asymmetry in the measured intensity is

greatest for strongly absorbing samples. To illustrate this, we

chose xs > 0 and 2�rs ¼ 10. For the third, the average

corrections about the azimuthal angle are evaluated, indi-

cating that there remains a strong dependence of the correc-
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tion on the degree of off-axis transmission after angular

averaging. Unless otherwise noted, synchrotron wavelengths

(’ 0.1 Å) were used for calculations of I2=I1.

The first case is unique; both the absorption and secondary

scattering corrections are symmetric in � so that they can be

applied directly to the one-dimensional IðqÞ data, obtained by

a circular average of the detector intensity as a function of q.

The calculated spherical absorption corrections normalized to

exp �2�rsð Þ for 2�rs = 0.1, 1 and 10 are shown in Fig. 6(a). The

secondary scattering corrections for the same �rs are also

shown (Fig. 6b). For these calculations, the J 2�ð Þ’s were taken

to have the form of the atomic scattering factor for Si, Zr and

Au. These elements have the appropriate densities and linear

absorption coefficients at synchrotron wavelengths to attain

these values of �rs for samples sizes that are appropriate for

the beamline ESL (Mauro & Kelton, 2011). The absorption

corrections shown in Fig. 6 were computed numerically,

although a fifth-order asymptotic expansion, equation (19),

agrees to within 2% at 2� = 30
 for 2�rs = 10, and is indis-

tinguishable from the numerical solution for 2�rs = 1. The

secondary scattering also depends on wavelength through

Jð2�Þ, as shown in Fig. 6(c): higher energy (i.e. lower wave-

length) results in a more rapid increase of I2=I1 with

momentum transfer and diffraction angle (not shown).

Off-central-axis alignment, the second case, results in a

dramatically asymmetric detector intensity pattern, requiring

a two-dimensional correction. Figs. 7(a)–7(d) show the

absorption correction for the intensity measured with an area

detector for 2�rs ¼ 10 for xs = 0, 0.1, 0.3 and 0.5, respectively.

The absorption correction as a function of scattering angle, 2�,

for the � = 0 axis, using the same values of 2�rs, is shown in

Fig. 7(e). The secondary scattering intensities, assuming values

for Au, �0 ¼ 0, 2�rs = 10, and xs = 0, 0.1, 0.3 and 0.5, are shown

in Figs. 8(a)–8(d), respectively. The ratios of secondary to

primary scattering intensities as a function of 2�, for � ¼ 0, are

shown in Fig. 8(e). The asymmetry observed in the measured

intensity due to the incidence of the X-ray beam off-incidence

with the axis through the center of the sample is dominated by

absorption corrections. However, a corresponding asymmetry

in the secondary scattering correction is also found.

Since the integral average around the azimuthal angle is

often taken for symmetric area detectors, the effect of mis-

alignment on the angular averaged corrections is considered.

As shown in Fig. 9 for Au, 2�rs = 10 and xs = 0, 0.1, 0.3, 0.5

and 0.8, the curvature of the averaged absorption correction

changes dramatically with increasing xs, from negative

curvature at near-central-axis alignment to positive curvature

as the degree of misalignment increases. Also shown in Fig. 9,
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Figure 7
Simulated two-dimensional detector image asymmetry in the absorption
correction normalized to the beam center for 2�rs ¼ 10 caused by off-
axis beam incidence at (a) xs ¼ 0, (b) xs ¼ 0:1, (c) xs ¼ 0:3 and (d)
xs ¼ 0:5, and (e) along the x axis � ¼ 0ð Þ.

Figure 6
Dependence of the absorption correction (a) and secondary scattering
intensity on attenuation (b) and energy (c) in centered spherical
geometry.



the angular averaged secondary scattering intensity system-

atically decreases with increasing xs. From perturbations of

2�rs and � about the Zr, 2�rs = 1, � = 0.1 case, the parameter

space in which the angular average correction remains within

1% of the centrally aligned beam case (xs = 0) at 2� = 30


is bound by xs < ½0:45� 0:2 ln 2�rsð Þ þ 3:2 Å
�1
ð�� 0:1 ÅÞ�.

Within this region of parameter space the centrally aligned

beam may be used as an approximation of the offset spherical

absorption correction.

In situations where the sample cannot be accurately aligned

using a transmission measurement, the degree and angle of

off-central-axis alignment (i.e. xs and �0) may be unknown.

Since liquids are isotropic, J 2�ð Þ should be axially symmetric,

so these parameters can be solved using the observed detector

asymmetry. For an area detector that is perpendicular, or tilt

corrected, to the transmitted X-ray beam and has been

background and gain corrected, any asymmetry present in the

detected scattering intensity from the amorphous samples can

be attributed to polarization effects and an X-ray beam that is

displaced from the central axis of the sample. The polarization

effects are described by equation (2). After making the

polarization correction, the azimuthal angle of maximum

intensity at constant 2� identifies the angle of the offset in Fig.

3 �0 þ �ð Þ. A non-linear fitting approach may then be used to

determine the value of xs that removes the asymmetry from

the detector image.

6. Concluding remarks

Corrections to improve the analysis of scattering data studies

from liquids are critically important. The artifacts arising from

an improper alignment of the sample, such as asymmetric

absorption and secondary scattering intensity, can produce

poor data that cannot be analyzed quantitatively. This paper

presents the development of corrections for absorption and

secondary scattering intensity when a partially polarized X-ray

beam of size smaller than the size of a liquid sample processed

in a containerless environment is incident upon the sample,

but displaced from the central axis. While the corrections

obtained are expressed in integral form, current computing

resources allow rapid evaluations for any given set of para-

meters.
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